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SI Text
Statistical Methods for Significance and Uncertainty Estimates. The
assignment of confidence bounds to the model-based climate
projections makes several underlying assumptions about the
nature of the data, specifically, for the differences between
reanalysis (‘‘observations’’) and climate model simulations:

The application of a t-test and the use of sigma levels to assign
confidence bounds implicitly assume a normal (Gaussian) dis-
tribution. This assumption needs to be tested, especially over the
time period 2000–2007, which in turn is used to compute the bias
and standard deviation.

The computation of bias assumes that the mean of the normal
distribution is stationary over time, while the computation of
uncertainty assumes the same is true for variance (i.e., het-
eroskedasticity is ruled out). The stationary assumptions in the
differences cannot be tested for projections, since reanalysis
(‘‘observed’’) data are not available for the future. However, as
a proxy, we can test whether the stationary assumptions hold for
previous time steps when climate model hindcasts can indeed be
compared with reanalysis data.

Bias and variance are assumed to remain constant with
projection lead times. This assumption is difficult to test, since
reanalysis data do not exist for the future and because climate
models evolve over time. The latter implies that accurate esti-
mates of the bias and variance of the most recent models as a
function of lead times typically cannot be obtained from prior
versions of climate models. However, normal distributions in
decadal differences, a lack of trend in the 2000–2007 bias and
variance, as well as nonstationary bias and variance in hindcasts,
suggest that these assumptions may not be unreasonable. How-
ever, we conjecture that the variance will increase with lead
times.

First, we test the assumption that the daily differences between
the reanalysis data and the CCSM 3.0 model projections are in
fact normally distributed, especially for 2000–2007. The corre-
spondence of the histogram with the fitted normal distribution
is visually examined. In addition, we produce the quantile-
quantile (Q-Q) plots, which test for normality. As shown in the
top left panel of Fig. S1, the histogram of the differences does
indeed follow a Gaussian (with mean �0.018) visually, which is
reflected in the Q-Q plot as well. The assumptions of normality
are further tested by comparing hindcasts from climate model
simulations with reanalysis data for each decade from 1950
onward. As shown in Fig. S1, the decadal differences follow the
Gaussian quite well, both visually from the histograms as well as
from the Q-Q plots.

The mean or standard deviation of the normal distributions in
Fig. S1 does not appear to change significantly over six consec-
utive decades. We test the stationary assumptions further in Fig.
S2. Trends in the mean and variance of the differences, along
with the confidence bounds along the trend lines, are examined
through regression analysis. The top, middle, and bottom panels
(there are two plots per panel) show the trends in the mean and
variance on the daily difference data after the application of an
annual moving average, a decadal moving average, and a 25-year
moving average. At 95% confidence levels, the trend lines do not
appear to deviate much from the zero-slope regression lines in
a statistically significant manner, even though slight trends may
exist for the 25-year moving averages. The annual moving
averages of the differences do not exhibit any linear trends
whatsoever in the mean or the variance, but there are interannual
features, which only rarely rise above the 95% confidence bands.

The decadal moving averages appear to exhibit a slight upward
trend in the mean and downward trend in the variance, which
appears slightly enhanced in the 25-year moving averages.
However, the deviations from a zero-slope line are relatively
small. While decadal and multidecadal features are present in
the differences, these are typically small compared to the 95%
confidence bands. Thus, we can derive a few broad conclusions
from Fig. S2. First, there are no major discernable trends in the
mean or variance of the differences that fall beyond the 95%
confidence bounds of the regression line. Second, the regression
line is not significantly different from a corresponding zero-slope
line, which implies stationary mean and variance. However, a
slight trend (higher for mean and lower for variance) in the
successive moving averages is noted. Third, weak interannual,
decadal, and multidecadal features are noted in the differences.
While not strong enough to overwhelm the bounds of the linear
regression, these features may have physical interpretations.
Thus, their relations with the interannual, decadal, and multid-
ecadal sea surface temperature anomalies (SSTA) may need to
be investigated, especially since climate models are known to be
weak in modeling SSTA and their impacts on regional climate.

Fig. 1 shows global average projections of temperatures with
uncertainty bounds. Here we present the complete t-test results
between the three scenarios and indicate which pairings show
separation at 95% confidence (� � 0.05). As shown in Table S1,
both the A1FI and A2 scenarios are significantly higher than B1
from 2040 onward, while A1FI does not separate from A2 until
2060 and then converges again by 2100.

Uncertainty in climate projections have typically been com-
puted based on multimodel (12) and initial-condition ensembles
(15), as well as by comparing model hindcasts with observations
(13). Multimodel ensembles attempt to capture the uncertainty
caused by our incomplete understanding of the physics and
assume that a statistical averaging of the results from multiple
models will be better than any one alone. However, since any
physical understanding developed by the community is typically
embedded within all models and the unknown physics are not
captured in any model, the uncertainties may be underestimated
from the multimodel approach. As suggested in Fig. 1 (bottom
left panel, 2000–2007), the variability in the observations are
rarely completely captured by the smoothed model outputs.
Initial-condition ensembles capture only one, and perhaps very
minor, aspect of the overall uncertainty. Fig. 1 visually depicts
that bounds generated by the ensemble ranges for A2 and B1 are
relatively small (compared to the bounds developed by compar-
ing with the observations) and that these bounds do not fluctuate
significantly over time, which indicates relative insensitivity to
initial conditions for these specific projections at global-average
scales. Furthermore, uncertainty bounds generated from com-
parisons with observations and shown as three standard devia-
tion levels around the bias-corrected mean are much larger in all
cases compared to the bounds generated from the ensembles
based on the median value for the central tendency at any given
point and the minimum and maximum as the bounds. We
confirmed that the standard deviations are different and statis-
tically distinguishable based on the F-test (see Table S2), espe-
cially since the observation-based bounds are always larger than
the initial-condition ensemble-based bounds.

Uncertainties based on comparing model hindcasts with ob-
servations can provide important insights on the predictability
and systematic errors of climate models. However, given that
climate models continually improve based on incoming infor-
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mation, the hindcasts may be closer to observations than future
projections; hence the uncertainty assessments in projections
may be underestimated. On the other hand, results from prior
model versions originally run in projection mode may be com-
pared with current observations. However, since models improve
continually, such an approach may overestimate the current
uncertainty. Here we assume that the IPCC SRES scenario
definitions (at least conceptually) and the CCSM 3.0 model have
not changed significantly since 2000. Thus, here we have been
able to compare the 2000–2007 model results almost in a forecast
(rather than a hindcast) mode with actual observations obtained
from NCEP Reanalysis during that period for uncertainty
bounds.

Owing to what are known as cascading uncertainties (the
percolation of uncertainties from emissions to carbon and on to
climate model projections, followed by regional climate and
hydrological models all of the way to assessments of regional
impacts), even a small gain in the characterization of uncertainty
at the earlier stages of the cascade can lead to significant
improvements in risk-informed decision-making related to ad-
aptation and mitigation. Stakeholders and end-users require
credible assessments of climate change and extremes at local to
regional scales for adaptation decisions (e.g., management of
natural water and nutritional resources, development of natural
hazards preparedness and humanitarian assistance infrastruc-
tures, as well as dealing with climate related migrations) and
policy negotiations (e.g., emissions regulations and agreements).
The ultimate goal may be to reduce uncertainties by developing
precise characterizations of the predictive ability of the current
generation of climate models, pointing to areas where enhance-
ments to physical understanding or modeling processes may be
necessary, and suggesting pathways for climate model improve-
ments in conjunction with statistical developments for uncer-
tainty treatment.

Geographic Variability. Risk-informed decisions require cost-
benefit analyses, for which regional-scale climate projections and
impacts become important first steps. The geographic variability
of climate change and extremes are important in this context. A
recently concluded high-profile climate change war game
brought these matters to the forefront (24).

In the main body of the paper, we already illustrated the
geographic variability between different IPCC SRES scenarios.
Here, we expand upon this discussion by examining variability
within the same scenario by comparing the three individual A1FI
ensemble members; this is an analysis for ensembles at a global
scale. Fig. S3 shows the differences between ensemble outputs
2000 (top), 2050 (middle), and 2100 (bottom). The three col-
umns represent the three possible pairwise comparisons between
the ensemble members. First and foremost, we observe that
significant spatial variability is indeed present, ranging from
�2.4 ° to 1.6 °C across all pairings. In addition, note that
magnitude and direction, as well as the geographic locality, of
observed differences may vary over time. For instance, the third
pairing has a large negative difference over much of Europe and
northern Asia in 2000 (top right), but by 2100, this pattern has
nearly inverted (bottom right), as the majority of the area now
shows a moderate positive difference. These time-variant dif-
ferences of up to 2.4 °C between ensemble members further
increase the uncertainty associated with model projections,
which should be taken into consideration in particular for
regional- or local-scale analyses of future climate change and/or
impacts.

Intensity, Duration, and Frequency of Heat Waves. We consider the
severity of heat waves based on the A1FI scenario, and Fig. 4
illustrates their current intensity as well as projections including
upper and lower bounds for 2050 and 2100. However, in char-

acterizing heat waves, we are often interested in the trifecta of
intensity, duration, and frequency for such events. Here we
compare heat waves from CCSM 3.0 model outputs to obser-
vations and examine the latter two components, i.e., duration
and frequency, omitted from the body text for space reasons.

Fig. S4 shows heat waves for observations from 2000–2007
(black) and for A1FI from 2000–2100 (red). The solid line
denotes the actual model output, while the dotted line indicates
the bias-corrected values with three-sigma error bounds. We
note that even the worst-case A1FI scenario under-predicts
intensity for the current decade by 0.65 °C on average, with an
increase of 4.36 °C by the end of the 21st century. Hence, heat
waves may become more intense than previously thought, and
impact studies should give this possible scenario, once believed
‘‘too extreme,’’ more serious consideration.

For duration and frequency, we adopt a different definition of
a heat wave, namely one based on the probability of occurrence.
More specifically, we select as threshold the 95th percentile of
nighttime minima over the period 2000–2007, and any night
exceeding this threshold is considered a heat wave. In Fig. S5, the
left column corresponds to average duration (number of days)
and the right column to the frequency (number of events per
year). The top row represents the reanalysis data for 2000–2007,
the next row the A1FI-forced model outputs for the same period,
and the bottom two rows the model outputs for 2050 and 2100,
respectively. First, we find that there is a fair amount of
agreement between the observed and model-based values, both
in terms of magnitude and spatial locality. Similar to intensity,
we also observe significant increases in both duration and
frequency of heat events in 2050, and even more so by 2100. It
is important to point out that the decrease in frequency for 2100
(bottom right) along the equator does not represent a true
reduction in heat events, but rather is a visual artifact caused by
a single heat event lasting the entire year; that is, the nighttime
low temperatures in 2100 will exceed the 95th percentile of
present levels every single night. Combined with our analysis of
intensity in the main body, these insights paint a grim picture for
the end of the century if emissions continue to evolve along the
trajectory defined by the A1FI scenario.

Computational Issues. Issues of computational complexity arise in
a number of different areas related to this work. First, there is
the immense complexity of the climate models themselves, which
can strain even the most advanced supercomputing resources. In
the case of CCSM 3.0, model runs proceed at �4.5 years of
simulation per day of wall clock time running on 192 proces-
sors*—this is the major reason why a Monte Carlo approach
using hundreds or thousands of model runs is simply not feasible.
And while these numbers are already staggering, there is a
continuous push to further reduce both spatial and temporal
resolutions, but also to include additional processes that are
currently being omitted to keep the computation tractable. In
the case of CCSM 3.0, experiments are already being run with
output at 6-h intervals, and improvements in the spatial resolu-
tion are only a matter of time.

Likewise, there are computational issues associated with the
analysis of the data, both model outputs as well as observations.
For example, merely calculating the heat waves from 100 years
of daily A1FI outputs (20 GB of data) took 60 CPU h on a
high-performance compute cluster. If we were to expand this
type of analysis to the approximately 100 CCSM 3.0 output
variables, it would require the equivalent of nearly 1 year of CPU
time—not to mention the fact that most variables are output at
each of 26 vertical layers. Moreover, we may be interested in
more complex analytic techniques, e.g., the application of ex-
treme value theory instead of an exceedance-over-threshold
approach, which would increase the computational complexity
of the problem manifold. For these reasons, consideration must
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be given to computational requirements and constraints when
performing any type of analysis on climate data.

Assumptions and Limitations. In this section, we state all known
assumptions in our analysis and limitations of the available data
and/or methods.

We assume a Gaussian distribution of differences between
model outputs and observations and test the validity of this
assumption (shown in SI Text). The temperature differences
appear to follow the Gaussian quite closely, which is not unex-
pected. However, this assumption may not hold for other
variables like precipitation.

Because bias and variance are stationary in hindcasts (shown
in this SI Text under Statistical Methods), we assume the same will
be true for projections as well. This assumption appears reason-
able in this context and is not to be confused with the assumption
about projection lead times below.

We implicitly assume the uncertainty remains stationary even as
a function of projection lead time. While we would expect an
increase, this is difficult to quantify as models evolve over time. The
assumption is a strong one. However, this does not take away from
our analysis of most likely values or our assertions about large
uncertainty and geographic variability. If nonstationarity with pro-
jection lead times is considered, uncertainty and variability are
expected to increase, lending further support to our assertion.

We assume the statistical methods used to compute confi-
dence intervals are valid despite a small number of data points
(8) in the sample, namely yearly differences for 2000–2007. This
is a strong assumption in general, but given our tests for Gaussian
and stationarity, probably not too unreasonable. This may be
especially true when global averages are considered. One alter-
native would be to compute the intervals by comparing model
hindcasts and observations. However, this alternative approach
has shortcomings as explained in the main paper. First, the
models implicitly take into account past observations, and hence

a comparison with hindcast may tend to underestimate the
uncertainty in projections. Second, hindcasts do not consider the
uncertainty caused by the emission scenarios. On the other hand,
comparing the most recent (in this case 2000–2007) model
outputs to corresponding observations may be considered as
close to online validation as may be achievable. Thus, the
definitions of IPCC SRES scenarios have remained the same
during this period, and the improvements in CCSM3 model
specifically to account for observations from 2000–2007 have
been minor if any.

Grid-based estimates are only as precise as the model (1.4° �
1.4° grid), but are interpolated for visualization so that overall
spatial trends are more easily discernible. Geospatial visualiza-
tion of climate data are an important research area and may need
to cater to multiple stakeholders like the modeling science
community and the consequence analysis community, as well as
to policy and decision-makers.

NCEP Reanalysis data are taken as a proxy for observations,
even though we are cognizant that these data are not actual
ground measurements, but the product of a model applied to
observed data from a variety of sources. This assumption may be
reasonable for temperature but needs to be tested for variables
like precipitation.

Our analysis relies on global averages in certain situations and
grid-based analysis in others. However, we use the outputs from
general circulation models (GCM) only. Future work needs to
examine continental to regional scale analysis, as well as outputs
of either regional climate models (RCM) or higher-resolution
GCM, when available.

We only use simulations from a single GCM here (namely,
CCSM 3.0) but a multimodel ensemble approach is certainly
possible and could be used in future research. We conjecture that
similar mean trends of global temperature would hold when
other models are included, but uncertainty and geographic
variability would be further increased.
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Fig. S1. Histograms of the model-reanalysis bias validate the normality assumption; best-fit curves are shown in red and Q-Q plots as insets.
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Fig. S2. Analysis of mean and variance of the differences in reanalysis and model simulations computed using 1950–2007 data.
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Fig. S3. Geographic variability between three ensembles of the A1FI scenario for 2000, 2050, and 2100.
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Fig. S4. Globally-average heat wave (°C) projections from CCSM 3.0, based on A1FI, along with error bars. The bias and standard deviations are calculated for
each projection by comparing NCEP Reanalysis data with model outputs in 2000–2007, which forms the basis in the generation of the error bars for 2010 to 2100.
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Fig. S5. Duration (Left) and frequency (Right) of heat waves from NCEP Reanalysis (top) and A1FI for 2000, 2050, and 2100.
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Table S1. Pairwise t test results between the A1FI, A2, and B1 scenarios at 95% confidence (� � 0.05)

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

A1FI-A2 t 0.385 0.295 0.059 0.599 1.034 1.781 2.018 1.851 2.041 1.371
95% No No No No No Yes Yes Yes Yes No

A1FI-B1 t 0.485 0.900 0.840 2.978 4.646 6.397 8.575 10.970 13.303 8.640
95% No No No Yes Yes Yes Yes Yes Yes Yes

A2-B1 t 0.182 0.393 0.945 1.952 2.873 3.334 5.111 7.807 9.821 12.667
95% No No No Yes Yes Yes Yes Yes Yes Yes
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Table S2. f test results for the A2 and B1 scenarios comparing uncertainty bounds to the ensemble bounds at 95% confidence
(� � 0.05)

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

A2 f 30.939 7.356 2.939 7.893 3.863 16.494 11.717 212.74 6.423 9.686
95% No No No No No No No No No No

B1 f 46.012 5.932 5.975 20.988 28.977 23.393 37.963 9.939 8.870 5.106
95% Yes Yes No Yes No Yes Yes Yes Yes Yes
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